发布网友
共1个回答
热心网友
α收益:一揽子可以自定义低估、同质化并且有波动的股票,不断买入更便宜的,卖出更贵的,从而获得的收益。
例如:几个跟着沪深300的ETF,你发现手中持有的沪深300ETF溢价2%了,而市场上同时存在一个折价1%的ETF,那么就卖出溢价高的沪深300ETF,去买折价的,这样虽然始终持有沪深300ETF,但获得了超越沪深300指数本身的收益,就是α收益。
解释一下同质化:明显所有的沪深300ETF是同质化的,也可以认为最小市值20个股票是同质化的,所有银行股是同质化的,分级A是同质化的。下文中有解释自定义低估。
β收益:基本面本身上涨是β收益。
例如,自定义最小市值的10个股票为一个指数,这些最小市值从5亿涨到20亿,这就是β收益。自定义最低股价10个为一个指数,从牛市的5元跌到2元,那么β收益就是负的
量化策略创建三个步骤:
策略的理论基础
历史回测
找到策略黑天鹅。
基本面理论
按基本面又可以分为:1.价值型;2.成长型;3.品质型;按中国特色A股基本面又可以添加;4.小市值型;5.股价型
技术面理论
按技术面又可以分为:1.趋势型,2.趋势反转型,3.缩量反弹,4.指数轮动,5.择时
风险套利
风险套利(或者称轮动):不断买入更便宜的,卖出更贵的。
注意:
有些理论基础并不牢固,并且不能很好解释(这也导致了各种投资流派互相不服)
有些量化跳过了理论基础,直接根据历史统计进行量化(本文不讨论),例如,统计*前后涨跌,一季度历史表现最好板块
对策略理论的解释:
基本面策略可以定义什么是低估,比如低PE是低估,低市值是低估,低股价是低估,高ROE是低估,高成长是低估;也可以自定义低估,PB*PE是低估,总市值*流通市值小是低估
基本面理论提供了一揽子同质化并且有波动的股票。有些基本面策略的股票间波动较小,例如最低PE股,一段时期内总是那么几个银行股;有些波动较大,比如小市值型
技术面理论有些很难定义什么是低估,比如趋势型;有些则看似可以定义低估,例如,BIAS最小,20日跌幅最大,其实也不是
能自定义低估的策略是风险套利,不能自定义低估的策略是统计
基本面本身能上涨,就获得了β收益
我得出的结论是:风险套利策略的核心是对自定义低估的轮动,即不断获得α收益!!
如何获得α收益:大部分基本面策略的收益是因为风险套利获得的;也就是不断买入更低估的,卖出更贵的;也就是因为调仓周期内因不同股票的波动而产生收益,因此适当缩短周期有利于提高收益;所以在一年内交易次数越多,alpha收益越大(投资大师说的减少交易次数,并不适用于套利)
理论本身获得的β收益并不多,甚至为负(价值型由于近几年市场估值不断降低,不调仓的话,收益是负的)
我们应当寻找的是:基本面理论本身能上涨,且能提供同质化,波动较大的策略(即获得α,又获得β)
统计策略其内在逻辑说服力小,是过去的概率来预测未来
历史回测中要用到一个哲学思想,叫做奥卡姆剃刀:较简单的理论比复杂的理论更好,因为它们更加可检验
改变测试起始时间。调仓周期超过2天的策略,应该试遍每个起始时间,取平均收益,这才最接近策略真实历史回测,因为理论上起始时间变化一两天对策略收益影响是不大的,如果变化很大就说明过度优化。
不要创建静态股票池。历史上每个阶段都有大牛股,完全可以收集大牛股作为股票池,算好调仓周期,每个阶段买最牛的,收益可以美到不敢想象
不要用PE.PB等指标精确逃顶抄底,最多用来确定一个大致范围。每次大顶点位都是不同的,这样的择时毫无意义。
先用25个以上股票测试,确定策略有效性,再减少数量做策略,如果25个测试无效,那么一两个即使收益很好,也该放弃。
改变条件权重。如果稍微改变权重,收益变化很大,那么就降低策略未来预期收益,别指望策略以后会表现这么好。
尽量从07年开始测试。除非你能确定每个时间市场的风格,显然这是不可能的。
同一套择时系统,如果用在策略1上回撤是30%,用在策略2上回撤是15%,你肯定会选择策略2,如果策略1和2本质上是差不多的策略,别太高兴,在未来,策略1和2表现谁好谁坏也是难说的
价值型,成长型,品质型策略,黑天鹅是过一个季度,可能财务数据完全变了,因此持仓个数不能太少,行业要分开
小市值,低价,低交易额策略,黑天鹅是出现仙股
统计类,技术类策略,黑天鹅是理论本身就不完美