发布网友 发布时间:2022-04-22 06:36
共3个回答
热心网友 时间:2024-02-27 20:12
认真看一下,所有法则都在这里了,am表示a的m次方,其它类推~~~
同底数幂的乘法公式和法则
(1)公式:
am·an=am+n(m、n都是正整数)
am·an·ap=am+n+p(m、n、p都是正整数)
(2)法则:
同底数幂相乘,底数不变,指数相加.
注意:Ⅰ.在此公式中,底数a可代表数字,字母也可以是一个代数式.
Ⅱ.此公式相乘的幂必须底数相同,若不相同,需进行调整,化为同底数,才可用公式.
1.幂的乘方的公式及法则
(1)公式:
(am)n=amn(m、n都是正整数)
〔(am)n〕p=amnp(m、n、p都是正整数)
(2)法则
幂的乘方,底数不变,指数相乘.
2.积的乘方的公式和法则
(1)公式
(ab)n=an·bn(n是正整数)
(abc)n=an·bn·cn(n是正整数)
(2)法则
积的乘方等于每一个因数乘方的积.
上述两个公式,在很多情况下都会用到逆运算,即:amn=(am)n=(an)m(m、n为正整数)
an·bn=(ab)n(n是正整数)
如:912=(93)4=(94)3
310×510=(3×5)10=1510
3.球的体积与半径的倍数关系
(1)如果一个球的半径扩大n倍,则它的体积扩大n3倍.
(2)如果甲球的半径是乙球的n倍,那么甲球的体积是乙球的n3倍
1.同底数幂的除法公式和法则
(1)公式:
am÷an=am-n(a≠0,m、n都是正整数,m>n)
(2)法则:
同底数幂相除,底数不变,指数相减.
注意:满足公式成立的条件.
2.零指数与负指数
规定:a0=1(a≠0)
a-p=
(a≠0,p是正整数)
说明:当有了上述两个规定后,也就是说幂的指数可以为0或负数,因此“同底数幂的除法”公式中,am-n中“m-n”可以为正数、负数或0,所以“m>n”的条件也可消去.
.单项式乘单项式
单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式.
如:(2a2)·(3a)=(2×3)(a2·a)=6a3
注意啦!Ⅰ.单项式乘单项式的结果仍是单项式.
Ⅱ.凡是在单项式中出现过的字母在结果里应该全有,不要漏掉因式.
Ⅲ.结果的次数应等于两个单项式的次数之和.
2.单项式乘多项式
单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加.
注意:Ⅰ.单项式乘多项式,多项式有几项(没有同类项),结果就有几项.
Ⅱ.主要依据的就是乘法的分配律,一定要保证单项式与多项式的每一项都相乘,要注意每一项乘积的符号.
3.多项式乘多项式
多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得积相加.
你要知道的:Ⅰ.多项式乘多项式,积仍是多项式,且积的项数小于或等于两个多项式项数的积.
Ⅱ.乘的过程中,不要漏掉,注意每项的符号.
1.平方差公式
(1)公式:(a+b)(a-b)=a2-b2
两数和与这两数差的积,等于它们的平方差.
(2)特征:
①左边:二项式乘以二项式,两数(a与b)的和与它们差的乘积.
②右边:这两数的平方差.
(3)找a与b的简便方法
由于(a+b)(a-b)可看作(a+b)〔a+(-b)〕,所以在这两个多项式中,a是相同的,而b与-b是互为相反数,那么a2-b2就可看作是符号相同的项(a)的平方减去符号相反的项(b与-b)的平方.
因此,运用平方差公式进行运算,关键是找出两个相乘的二项式中相同的项作为a,互为相反的项作为b.
热心网友 时间:2024-02-27 20:12
认真看一下,所有法则都在这里了,am表示a的m次方,其它类推~~~
同底数幂的乘法公式和法则
(1)公式:
am·an=am+n(m、n都是正整数)
am·an·ap=am+n+p(m、n、p都是正整数)
(2)法则:
同底数幂相乘,底数不变,指数相加.
注意:Ⅰ.在此公式中,底数a可代表数字,字母也可以是一个代数式.
Ⅱ.此公式相乘的幂必须底数相同,若不相同,需进行调整,化为同底数,才可用公式.
1.幂的乘方的公式及法则
(1)公式:
(am)n=amn(m、n都是正整数)
〔(am)n〕p=amnp(m、n、p都是正整数)
(2)法则
幂的乘方,底数不变,指数相乘.
2.积的乘方的公式和法则
(1)公式
(ab)n=an·bn(n是正整数)
(abc)n=an·bn·cn(n是正整数)
(2)法则
积的乘方等于每一个因数乘方的积.
上述两个公式,在很多情况下都会用到逆运算,即:amn=(am)n=(an)m(m、n为正整数)
an·bn=(ab)n(n是正整数)
如:912=(93)4=(94)3
310×510=(3×5)10=1510
3.球的体积与半径的倍数关系
(1)如果一个球的半径扩大n倍,则它的体积扩大n3倍.
(2)如果甲球的半径是乙球的n倍,那么甲球的体积是乙球的n3倍
1.同底数幂的除法公式和法则
(1)公式:
am÷an=am-n(a≠0,m、n都是正整数,m>n)
(2)法则:
同底数幂相除,底数不变,指数相减.
注意:满足公式成立的条件.
2.零指数与负指数
规定:a0=1(a≠0)
a-p=
(a≠0,p是正整数)
说明:当有了上述两个规定后,也就是说幂的指数可以为0或负数,因此“同底数幂的除法”公式中,am-n中“m-n”可以为正数、负数或0,所以“m>n”的条件也可消去.
.单项式乘单项式
单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式.
如:(2a2)·(3a)=(2×3)(a2·a)=6a3
注意啦!Ⅰ.单项式乘单项式的结果仍是单项式.
Ⅱ.凡是在单项式中出现过的字母在结果里应该全有,不要漏掉因式.
Ⅲ.结果的次数应等于两个单项式的次数之和.
2.单项式乘多项式
单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加.
注意:Ⅰ.单项式乘多项式,多项式有几项(没有同类项),结果就有几项.
Ⅱ.主要依据的就是乘法的分配律,一定要保证单项式与多项式的每一项都相乘,要注意每一项乘积的符号.
3.多项式乘多项式
多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得积相加.
你要知道的:Ⅰ.多项式乘多项式,积仍是多项式,且积的项数小于或等于两个多项式项数的积.
Ⅱ.乘的过程中,不要漏掉,注意每项的符号.
1.平方差公式
(1)公式:(a+b)(a-b)=a2-b2
两数和与这两数差的积,等于它们的平方差.
(2)特征:
①左边:二项式乘以二项式,两数(a与b)的和与它们差的乘积.
②右边:这两数的平方差.
(3)找a与b的简便方法
由于(a+b)(a-b)可看作(a+b)〔a+(-b)〕,所以在这两个多项式中,a是相同的,而b与-b是互为相反数,那么a2-b2就可看作是符号相同的项(a)的平方减去符号相反的项(b与-b)的平方.
因此,运用平方差公式进行运算,关键是找出两个相乘的二项式中相同的项作为a,互为相反的项作为b.
热心网友 时间:2024-02-27 20:12
你上百度查查就有了,要懂得将查不到的问题才出去问,所有法则都在这里了,am表示a的m次方,其它类推~~~
同底数幂的乘法公式和法则
(1)公式:
am·an=am+n(m、n都是正整数)
am·an·ap=am+n+p(m、n、p都是正整数)
(2)法则:
同底数幂相乘,底数不变,指数相加.
注意:Ⅰ.在此公式中,底数a可代表数字,字母也可以是一个代数式.
Ⅱ.此公式相乘的幂必须底数相同,若不相同,需进行调整,化为同底数,才可用公式.
1.幂的乘方的公式及法则
(1)公式:
(am)n=amn(m、n都是正整数)
〔(am)n〕p=amnp(m、n、p都是正整数)
(2)法则
幂的乘方,底数不变,指数相乘.
2.积的乘方的公式和法则
(1)公式
(ab)n=an·bn(n是正整数)
(abc)n=an·bn·cn(n是正整数)
(2)法则
积的乘方等于每一个因数乘方的积.
上述两个公式,在很多情况下都会用到逆运算,即:amn=(am)n=(an)m(m、n为正整数)
an·bn=(ab)n(n是正整数)
如:912=(93)4=(94)3
310×510=(3×5)10=1510
3.球的体积与半径的倍数关系
(1)如果一个球的半径扩大n倍,则它的体积扩大n3倍.
(2)如果甲球的半径是乙球的n倍,那么甲球的体积是乙球的n3倍
1.同底数幂的除法公式和法则
(1)公式:
am÷an=am-n(a≠0,m、n都是正整数,m>n)
(2)法则:
同底数幂相除,底数不变,指数相减.
注意:满足公式成立的条件.
2.零指数与负指数
规定:a0=1(a≠0)
a-p=
(a≠0,p是正整数)
说明:当有了上述两个规定后,也就是说幂的指数可以为0或负数,因此“同底数幂的除法”公式中,am-n中“m-n”可以为正数、负数或0,所以“m>n”的条件也可消去.
.单项式乘单项式
单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式.
如:(2a2)·(3a)=(2×3)(a2·a)=6a3
注意啦!Ⅰ.单项式乘单项式的结果仍是单项式.
Ⅱ.凡是在单项式中出现过的字母在结果里应该全有,不要漏掉因式.
Ⅲ.结果的次数应等于两个单项式的次数之和.
2.单项式乘多项式
单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加.
注意:Ⅰ.单项式乘多项式,多项式有几项(没有同类项),结果就有几项.
Ⅱ.主要依据的就是乘法的分配律,一定要保证单项式与多项式的每一项都相乘,要注意每一项乘积的符号.
3.多项式乘多项式
多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得积相加.
你要知道的:Ⅰ.多项式乘多项式,积仍是多项式,且积的项数小于或等于两个多项式项数的积.
Ⅱ.乘的过程中,不要漏掉,注意每项的符号.
1.平方差公式
(1)公式:(a+b)(a-b)=a2-b2
两数和与这两数差的积,等于它们的平方差.
(2)特征:
①左边:二项式乘以二项式,两数(a与b)的和与它们差的乘积.
②右边:这两数的平方差.
(3)找a与b的简便方法
由于(a+b)(a-b)可看作(a+b)〔a+(-b)〕,所以在这两个多项式中,a是相同的,而b与-b是互为相反数,那么a2-b2就可看作是符号相同的项(a)的平方减去符号相反的项(b与-b)的平方.
因此,运用平方差公式进行运算,关键是找出两个相乘的二项式中相同的项作为a,互为相反的项作为b.
热心网友 时间:2024-02-27 20:12
你上百度查查就有了,要懂得将查不到的问题才出去问,所有法则都在这里了,am表示a的m次方,其它类推~~~
同底数幂的乘法公式和法则
(1)公式:
am·an=am+n(m、n都是正整数)
am·an·ap=am+n+p(m、n、p都是正整数)
(2)法则:
同底数幂相乘,底数不变,指数相加.
注意:Ⅰ.在此公式中,底数a可代表数字,字母也可以是一个代数式.
Ⅱ.此公式相乘的幂必须底数相同,若不相同,需进行调整,化为同底数,才可用公式.
1.幂的乘方的公式及法则
(1)公式:
(am)n=amn(m、n都是正整数)
〔(am)n〕p=amnp(m、n、p都是正整数)
(2)法则
幂的乘方,底数不变,指数相乘.
2.积的乘方的公式和法则
(1)公式
(ab)n=an·bn(n是正整数)
(abc)n=an·bn·cn(n是正整数)
(2)法则
积的乘方等于每一个因数乘方的积.
上述两个公式,在很多情况下都会用到逆运算,即:amn=(am)n=(an)m(m、n为正整数)
an·bn=(ab)n(n是正整数)
如:912=(93)4=(94)3
310×510=(3×5)10=1510
3.球的体积与半径的倍数关系
(1)如果一个球的半径扩大n倍,则它的体积扩大n3倍.
(2)如果甲球的半径是乙球的n倍,那么甲球的体积是乙球的n3倍
1.同底数幂的除法公式和法则
(1)公式:
am÷an=am-n(a≠0,m、n都是正整数,m>n)
(2)法则:
同底数幂相除,底数不变,指数相减.
注意:满足公式成立的条件.
2.零指数与负指数
规定:a0=1(a≠0)
a-p=
(a≠0,p是正整数)
说明:当有了上述两个规定后,也就是说幂的指数可以为0或负数,因此“同底数幂的除法”公式中,am-n中“m-n”可以为正数、负数或0,所以“m>n”的条件也可消去.
.单项式乘单项式
单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式.
如:(2a2)·(3a)=(2×3)(a2·a)=6a3
注意啦!Ⅰ.单项式乘单项式的结果仍是单项式.
Ⅱ.凡是在单项式中出现过的字母在结果里应该全有,不要漏掉因式.
Ⅲ.结果的次数应等于两个单项式的次数之和.
2.单项式乘多项式
单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加.
注意:Ⅰ.单项式乘多项式,多项式有几项(没有同类项),结果就有几项.
Ⅱ.主要依据的就是乘法的分配律,一定要保证单项式与多项式的每一项都相乘,要注意每一项乘积的符号.
3.多项式乘多项式
多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得积相加.
你要知道的:Ⅰ.多项式乘多项式,积仍是多项式,且积的项数小于或等于两个多项式项数的积.
Ⅱ.乘的过程中,不要漏掉,注意每项的符号.
1.平方差公式
(1)公式:(a+b)(a-b)=a2-b2
两数和与这两数差的积,等于它们的平方差.
(2)特征:
①左边:二项式乘以二项式,两数(a与b)的和与它们差的乘积.
②右边:这两数的平方差.
(3)找a与b的简便方法
由于(a+b)(a-b)可看作(a+b)〔a+(-b)〕,所以在这两个多项式中,a是相同的,而b与-b是互为相反数,那么a2-b2就可看作是符号相同的项(a)的平方减去符号相反的项(b与-b)的平方.
因此,运用平方差公式进行运算,关键是找出两个相乘的二项式中相同的项作为a,互为相反的项作为b.
热心网友 时间:2024-02-27 20:12
Ⅱ,而b与-b是互为相反数,m>.单项式乘单项式的结果仍是单项式.多项式乘多项式.
1.
因此:
am÷an=am-n(a≠0.
如,注意每项的符号,指数相减,所以“m>:
同底数幂相除,则它的体积扩大n3倍,不要漏掉因式,也就是说幂的指数可以为0或负数、p都是正整数)
(2)法则
幂的乘方.幂的乘方的公式及法则
(1)公式,多项式有几项(没有同类项)你上百度查查就有了,指数相加.单项式乘单项式
单项式与单项式相乘:Ⅰ:Ⅰ,底数不变:(a+b)(a-b)=a2-b2
两数和与这两数差的积:912=(93)4=(94)3
310×510=(3×5)10=1510
3.多项式乘多项式
多项式与多项式相乘.
2.单项式乘多项式
单项式与多项式相乘,结果就有几项:二项式乘以二项式,其余字母连同它的指数不变、n都是正整数)
am·an·ap=am+n+p(m,要注意每一项乘积的符号,a是相同的:Ⅰ.
Ⅱ.
(2)特征,那么甲球的体积是乙球的n3倍
1;n”的条件也可消去,等于它们的平方差,两数(a与b)的和与它们差的乘积,字母也可以是一个代数式,需进行调整、相同字母的幂分别相乘,运用平方差公式进行运算,所有法则都在这里了;n)
(2)法则,不要漏掉.此公式相乘的幂必须底数相同:
am·an=am+n(m:满足公式成立的条件、n都是正整数)
〔(am)n〕p=amnp(m.
上述两个公式,就是根据分配律用单项式去乘多项式的每一项.
注意.
注意.凡是在单项式中出现过的字母在结果里应该全有:当有了上述两个规定后.结果的次数应等于两个单项式的次数之和:a0=1(a≠0)
a-p=
(a≠0,am-n中“m-n”可以为正数、n为正整数)
an·bn=(ab)n(n是正整数)
如.
3、n都是正整数,底数不变.乘的过程中.
热心网友 时间:2024-02-27 20:12
Ⅱ,而b与-b是互为相反数,m>.单项式乘单项式的结果仍是单项式.多项式乘多项式.
1.
因此:
am÷an=am-n(a≠0.
如,注意每项的符号,指数相减,所以“m>:
同底数幂相除,则它的体积扩大n3倍,不要漏掉因式,也就是说幂的指数可以为0或负数、p都是正整数)
(2)法则
幂的乘方.幂的乘方的公式及法则
(1)公式,多项式有几项(没有同类项)你上百度查查就有了,指数相加.单项式乘单项式
单项式与单项式相乘:Ⅰ:Ⅰ,底数不变:(a+b)(a-b)=a2-b2
两数和与这两数差的积:912=(93)4=(94)3
310×510=(3×5)10=1510
3.多项式乘多项式
多项式与多项式相乘.
2.单项式乘多项式
单项式与多项式相乘,结果就有几项:二项式乘以二项式,其余字母连同它的指数不变、n都是正整数)
am·an·ap=am+n+p(m,要注意每一项乘积的符号,a是相同的:Ⅰ.
Ⅱ.
(2)特征,那么甲球的体积是乙球的n3倍
1;n”的条件也可消去,等于它们的平方差,两数(a与b)的和与它们差的乘积,字母也可以是一个代数式,需进行调整、相同字母的幂分别相乘,运用平方差公式进行运算,所有法则都在这里了;n)
(2)法则,不要漏掉.此公式相乘的幂必须底数相同:
am·an=am+n(m:满足公式成立的条件、n都是正整数)
〔(am)n〕p=amnp(m.
上述两个公式,就是根据分配律用单项式去乘多项式的每一项.
注意.
注意.凡是在单项式中出现过的字母在结果里应该全有:当有了上述两个规定后.结果的次数应等于两个单项式的次数之和:a0=1(a≠0)
a-p=
(a≠0,am-n中“m-n”可以为正数、n为正整数)
an·bn=(ab)n(n是正整数)
如.
3、n都是正整数,底数不变.乘的过程中.