发布网友 发布时间:2022-03-24 06:02
共2个回答
热心网友 时间:2022-03-24 07:32
多阶段决策过程最优化问题
——动态规划的基本模型
在现实生活中,有一类活动的过程,由于它的特殊性,可将过程分成若干个互相联系的阶段,在它的每一阶段都需要作出决策,从而使整个过程达到最好的活动效果。因此各个阶段决策的选取不能任意确定,它依赖于当前面临的状态,又影响以后的发展。当各个阶段决策确定后,就组成一个决策序列,因而也就确定了整个过程的一条活动路线。这种把一个问题看做是一个前后关联具有链状结构的多阶段过程就称为多阶段决策过程,这种问题称为多阶段决策最优化问题。
【例题1】最短路径问题。图中给出了一个地图,地图中每个顶点代表一个城市,两个城市间的连线代表道路,连线上的数值代表道路的长度。现在,想从城市A到达城市E,怎样走路程最短,最短路程的长度是多少?
【分析】把从A到E的全过程分成四个阶段,用k表示阶段变量,第1阶段有一个初始状态A,两条可供选择的支路ABl、AB2;第2阶段有两个初始状态B1、 B2,B1有三条可供选择的支路,B2有两条可供选择的支路……。用dk(xk,xk+1)表示在第k阶段由初始状态xk到下阶段的初始状态xk+1的路径距离,Fk(xk)表示从第k阶段的xk到终点E的最短距离,利用倒推方法求解A到E的最短距离。具体计算过程如下:
S1:K=4,有:F4(D1)=3,F4(D2)=4,F4(D3)=3
S2: K=3,有:F3(C1)=min{d3(C1,D1)+F4(D1),d3(C1,D2)+F4(d2)}=min{8,10}=8
F3(C2)=d3(C2,D1)+f4(D1)=5+3=8
F3(C3)=d3(C3,D3)+f4(D3)=8+3=11
F3(C4)=d3(C4,D3)+f4(D3)=3+3=6
S2: K=2,有:F2(B1)=min{d2(B1,C1)+F3(C1),d2(B1,C2)+f3(C2),d2(B1,C3)+F3(C3)}=min{9,12,14}=9
F2(m)=min{d2(B2,c2)+f3(C2),d2(B2,C4)+F3(C4)}=min{16,10}=10
S4:k=1,有:F1(A)=min{d1(A,B1)+F2(B1),d1(A,B2)+F2(B2)}=min{13,13}=13
因此由A点到E点的全过程的最短路径为A—>B2一>C4—>D3—>E。最短路程长度为13。
从以上过程可以看出,每个阶段中,都求出本阶段的各个初始状态到过程终点E的最短路径和最短距离,当逆序倒推到过程起点A时,便得到了全过程的最短路径及最短距离,同时附带得到了一组最优结果(即各阶段的各状态到终点E的最优结果)。
在上例的多阶段决策问题中,各个阶段采取的决策,一般来说是与时间有关的,决策依赖于当前状态,又随即引起状态的转移,一个决策序列就是在变化的状态中产生出来的,故有“动态”的含义,称这种解决多阶段决策最优化问题的方法为动态规划方法。
根据上例分析和动态规划的基本概念,可以得到动态规划的基本模型如下:
(1)确定问题的决策对象。
(2)对决策过程划分阶段。
(3)对各阶段确定状态变量。
(4)根据状态变量确定费用函数和目标函数。
(5)建立各阶段状态变量的转移过程,确定状态转移方程。
思考与练习:完成并提交作业
1、写出本节例题的算法及PASCAL程序。
2、若城市路径示意图如下图所示,
图中,每条边上的数字是这段道路的长度。条件:从A地出发,只允许向右或向上走。试寻找一条从A地到B地的最短路径和长度。(分析与解)
热心网友 时间:2022-03-24 08:50
动态规划(dynamic programming)是运筹学的一个分支,是求解决策过程(decision process)最优化的数学方法。20世纪50年代初美国数学家R.E.Bellman等人在研究多阶段决策过程(multistep decision process)的优化问题时,提出了著名的最优化原理(principle of optimality),把多阶段过程转化为一系列单阶段问题,逐个求解,创立了解决这类过程优化问题的新方法——动态规划。1957年出版了他的名著Dynamic Programming,这是该领域的第一本著作。
动态规划问世以来,在经济管理、生产调度、工程技术和最优控制等方面得到了广泛的应用。例如最短路线、库存管理、资源分配、设备更新、排序、装载等问题,用动态规划方法比用其它方法求解更为方便。
虽然动态规划主要用于求解以时间划分阶段的动态过程的优化问题,但是一些与时间无关的静态规划(如线性规划、非线性规划),只要人为地引进时间因素,把它视为多阶段决策过程,也可以用动态规划方法方便地求解。