发布网友 发布时间:2022-04-26 21:45
共5个回答
懂视网 时间:2022-10-05 19:45
1、多项式乘多项式法则是:多项式与多项式相乘,先用一个多项式的每一项与另一个多项式的每一项相乘,再把所得的积相加。
2、多项式乘以多项式就是利用乘法分配律法则得出的,表达公式为:(a+b)×(c+d)=ac+ad+bc+bd。
热心网友 时间:2023-08-23 12:46
多项式与多项式相乘,先用一个多项式的每一项与另一个多项式的每一项相乘,再把所得的积相加。
由多项式乘多项式法则可以得到(a+b)(c+d)=a(c+d)+b(c+d)=ac+ad+bc+bd
上面的运算过程,也可以表示为(a+b)(c+d)=ac+ad+bc+bd
多项式乘以多项式就是利用乘法分配律法则得出的。
扩展资料:
一、多项式的加法和乘法
有限的单项式之和称为多项式。不同类的单项式之和表示的多项式,其中系数不为零的单项式的最高次数,称为此多项式的次数。
多项式的加法,是指多项式中同类项的系数相加,字母保持不变(即合并同类项)。多项式的乘法,是指把一个多项式中的每个单项式与另一个多项式中的每个单项式相乘之后合并同类项。
F上x1,x2,…,xn的多项式全体所成的集合Fx{1,x2,…,xn},对于多项式的加法和乘法成为一个环,是具有单位元素的整环。
域上的多元多项式也有因式分解惟一性定理。
二、相关应用
给出多项式 f∈R[x1,...,xn] 以及一个 R-代数 A。对 (a1,...,an)∈An,我们把 f 中的 xj 都换成 aj,得出一个 A 中的元素,记作 f(a1...an)。如此, f 可看作一个由 An 到 A 的函数。
若然 f(a1...an)=0,则 (a1...an) 称作 f 的根或零点。
例如 f=x^2+1。若然考虑 x 是实数、复数、或矩阵,则 f 会无根、有两个根、及有无限个根!
例如 f=x-y。若然考虑 x 是实数或复数,则 f 的零点集是所有 (x,x) 的集合,是一个代数曲线。事实上所有代数曲线由此而来。
另外,若所有系数为实数多项式 P(x)有复数根Z,则Z的共轨复数也是根。
若P(x)有n个重叠的根,则 P‘(x) 有n-1个重叠根。即若 P(x)=(x-a)^nQ(x),则有 a 是 P’(x)的重叠根且有n-1个。
参考资料来源:百度百科-多项式
参考资料来源:百度百科-多项式乘多项式法则
热心网友 时间:2023-08-23 12:46
一、箭头法
两个多项式相乘,可根据箭头指示并结合原式计算,即先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加。
二、整体求解法
两个多项式相乘时,我们可以把其中的一个多项式看成一个“整体”,先按单项式与多项式相乘的法则来计算,然后再进一步求解。
多项式乘多项式法则:多项式与多项式相乘,先用一个多项式的每一项与另一个多项式的每一项相乘,再把所得的积相加。由多项式乘多项式法则可以得到(a+b)(c+d)=a(c+d)+b(c+d)=ac+ad+bc+bd。
热心网友 时间:2023-08-23 12:47
先用一个多项式的每一项于另一个多项式的每一项相乘,再把所得的积相加。
热心网友 时间:2023-08-23 12:47
(x-1)(x-2)=x的平方-(1+2)x+1*2=x的平方-3x+2
(x-a)(x-b)=x的平方-(a+b)x+ab
热心网友 时间:2023-08-23 12:48
先把其中两个多项式相乘与利用乘法交换律,结合律和分配律进行巧妙计算。😄