发布网友 发布时间:2022-04-26 23:12
共1个回答
热心网友 时间:2022-06-19 20:40
圆锥曲线的解题技巧一、常规七大题型:(1)中点弦问题具有斜率的弦中点问题,常用设而不求法(点差法):设曲线上两点为(x1,y1),(x2,y2),代入方程,然后两方程相减,再应用中点关系及斜率公式(当然在这里也要注意斜率不存在的请款讨论),消去四个参数。xy0x2y2如:(1)221(ab0)与直线相交于A、B,设弦AB中点为M(x0,y0),则有0k0。22ababxy0x2y2(2)221(a0,b0)与直线l相交于A、B,设弦AB中点为M(x0,y0)则有0k0aba2b2(3)y2=2px(p>0)与直线l相交于A、B设弦AB中点为M(x0,y0),则有2y0k=2p,即y0k=p.y2典型例题给定双曲线x过A(2,1)的直线与双曲线交于两点P1及P2,求线段P1P21。22的中点P的轨迹方程。(2)焦点三角形问题椭圆或双曲线上一点P,与两个焦点F1、F2构成的三角形问题,常用正、余弦定理搭桥。x2y2典型例题设P(x,y)为椭圆221上任一点,F1(c,0),F2(c,0)为焦点,ɪPF1F2,abɪPF2F1。(1)求证离心率esin();sinsin3(2)求|PF1|PF2|的最值。3(3)直线与圆锥曲线位置关系问题直线与圆锥曲线的位置关系的基本方法是解方程组,进而转化为一元二次方程后利用判别式、根与系1/27页数的关系、求根公式等来处理,应特别注意数形结合的思想,通过图形的直观性帮助分析解决问题,如果直线过椭圆的焦点,结合三大曲线的定义去解。典型例题抛物线方程y2p(x1)(p0),直线xyt与x轴的交点在抛物线准线的右边。(1)求证:直线与抛物线总有两个不同交点(2)设直线与抛物线的交点为A、B,且OA⊥OB,求p关于t的函数f(t)的表达式。(4)圆锥曲线的相关最值(范围)问题圆锥曲线中的有关最值(范围)问题,常用代数法和几何法解决。若命题的条件和结论具有明显的几何意义,一般可用图形性质来解决。若命题的条件和结论体现明确的函数关系式,则可建立目标函数(通常利用二次函数,三角函数,均值不等式)求最值。(1),可以设法得到关于a的不等式,通过解不等式求出a的范围,即:“求范围,找不等式”。或者将a表示为另一个变量的函数,利用求函数的值域求出a的范围;对于(2)首先要把△NAB的面积表示为一个变量的函数,然后再求它的最大值,即:“最值问题,函数思想”。最值问题的处理思路:1、建立目标函数。用坐标表示距离,用方程消参转化为一元二次函数的最值问题,关键是由方程求x、y的范围;2、数形结合,用化曲为直的转化思想;3、利用判别式,对于二次函数求最值,往往由条件建立二次方程,用判别式求最值;4、借助均值不等式求最值。典型例题已知抛物线y2=2px(p>0),过M(a,0)且斜率为1的直线L与抛物线交于不同的两点A、B,|AB|≤2p(1)求a的取值范围;(2)若线段AB的垂直平分线交x轴于点N,求△NAB面积的最大值。(5)求曲线的方程问题1.曲线的形状已知--------这类问题一般可用待定系数法解决。典型例题已知直线L过原点,抛物线C的顶点在原点,焦点在x轴正半轴上。若点A(-1,0)和点B(0,8)关于L的对称点都在C上,求直线L和抛物线C的方程。2/27页2.曲线的形状未知-----求轨迹方程典型例题已知直角坐标平面上点Q(2,0)和圆C:x2+y2=1,动点M到圆C的切线长与|MQ|的比等于常数(>0),求动点M的轨迹方程,并说明它是什么曲线。(6)存在两点关于直线对称问题在曲线上两点关于某直线对称问题,可以按如下方式分三步解决:求两点所在的直线,求这两直线的交点,使这交点在圆锥曲线形内。(当然也可以利用韦达定理并结合判别式来解决)x2y2典型例题已知椭圆C的方程1,试确定m的取值范围,使得对于直线y4xm,椭圆C43上有不同两点关于直线对称(7)两线段垂直问题圆锥曲线两焦半径互相垂直问题,常用k1·k2y1·y21来处理或用向量的坐标运算来处理。x1·x22典型例题已知直线l的斜率为k,且过点P(2,0),抛物线C:y4(x1),直线l与抛物线C有两个不同的交点(如图)。(1)求k的取值范围;(2)直线l的倾斜角为何值时,A、B与抛物线C的焦点连线互相垂直。四、解题的技巧方面:3/27页在教学中,学生普遍觉得解析几何问题的计算量较大。事实上,如果我们能够充分利用几何图形、韦达定理、曲线系方程,以及运用“设而不求”的策略,往往能够减少计算